Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens

نویسندگان

  • Raksha Urs
  • Arthur Ho
  • Fabrice Manns
  • Jean-Marie Parel
چکیده

PURPOSE To develop an age-dependent mathematical model of the zero-order shape of the isolated ex vivo human crystalline lens, using one mathematical function, that can be subsequently used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. METHODS Profiles of whole isolated human lenses (n=30) aged 20-69, were measured from shadow-photogrammetric images. The profiles were fit to a 10th-order Fourier series consisting of cosine functions in polar-co-ordinate system that included terms for tilt and decentration. The profiles were corrected using these terms and processed in two ways. In the first, each lens was fit to a 10th-order Fourier series to obtain thickness and diameter, while in the second, all lenses were simultaneously fit to a Fourier series equation that explicitly include linear terms for age to develop an age-dependent mathematical model for the whole lens shape. RESULTS Thickness and diameter obtained from Fourier series fits exhibited high correlation with manual measurements made from shadow-photogrammetric images. The root-mean-squared-error of the age-dependent fit was 205 microm. The age-dependent equations provide a reliable lens model for ages 20-60 years. CONCLUSION The contour of the whole human crystalline lens can be modeled with a Fourier series. Shape obtained from the age-dependent model described in this paper can be used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape of the isolated ex-vivo human crystalline lens

PURPOSE To develop an age-dependent mathematical model of the isolated ex-vivo human crystalline lens shape to serve as basis for use in computational modeling. METHODS Profiles of whole isolated human lenses (n=27) aged 6 to 82, were measured from shadow-photogrammetric images. Two methods were used to analyze the lenses. In the two curves method (TCM) the anterior and posterior surfaces of ...

متن کامل

Measurement of Ex Vivo Porcine Lens Shape During Simulated Accommodation, Before and After fs-Laser Treatment.

PURPOSE According to Helmholtz, accommodation is based on the flexibility of the crystalline lens, which decreases with age, causing presbyopia. With femtosecond (fs)-lentotomy treatment, it is possible to restore the flexibility of presbyopic lenses. The efficiency of the treatment can be systematically evaluated using the finite element method based on experimental data. The purpose of this s...

متن کامل

Age-dependent variation of the Gradient Index profile in human crystalline lenses.

PURPOSE: To reconstruct the gradient index (GRIN) profile of human crystalline lenses ex-vivo using Optical Coherence Tomography (OCT) imaging with an optimization technique and to study the dependence of the GRIN profile with age. METHODS: Cross-sectional images of nine isolated human crystalline lenses with ages ranging from 6 to 72 (post mortem time 1 to 4 days) were obtained using a custom...

متن کامل

Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.

Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface...

متن کامل

Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.

PURPOSE Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). METHODS The method was validated ex vivo in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2010